
Microsoft DP-100 Azure Data Scientist
Certification Study Notes
Code: DP-100

Azure ML Workspace

Azure Machine Learning Workspace

Central resource for ML development

Core Components

Associated Resources

Storage Account

Default datastore, artifacts, logs

Key Vault

Secrets, connection strings, keys

Component Purpose Key Features

Workspace Top-level resource Contains all ML assets

Compute Instances Development VMs Jupyter, VS Code integration

Compute Clusters Training resources Auto-scaling, low-priority VMs

Datastores Data connections Azure Storage, ADLS, SQL

Data Assets Versioned datasets URIs, MLTable, file references

Environments Runtime configs Docker images, conda specs

Search certifications Search

Analytics (⌘⇧A)
Feedback

1 / 10

http://localhost:3000/


Container Registry

Docker images for environments

Application Insights

Monitoring, telemetry, logs

Compute Types

Compute Instance: Single VM for development and testing

Compute Cluster: Multi-node for distributed training

Kubernetes: AKS for inference workloads

Serverless: On-demand compute for training jobs

Attached: External compute (HDInsight, Databricks)

Exam Focus Areas

Compute clusters auto-scale to 0 nodes when idle

Use low-priority VMs for cost savings (may be preempted)

Datastores abstract connection details from code

Data assets enable versioning and lineage tracking

Data Exploration

Data Exploration & Preparation

Working with data in Azure ML

Data Asset Types

Type Use Case Format

URI File Single files uri_file

URI Folder Directories uri_folder

Feedback

2 / 10



Data Access Patterns

Download

Copy data to local compute

Mount

Mount as file system (read/write)

Direct

Stream data directly

Feature Engineering

Normalization: Scale features to common range (MinMax, StandardScaler)

Encoding: Convert categorical to numeric (OneHot, Label)

Imputation: Handle missing values (mean, median, mode)

Feature Selection: Choose relevant features (correlation, importance)

Binning: Group continuous values into categories

MLTable

MLTable allows schema definition and transformations in a YAML file.

It's the preferred format for tabular datasets used in AutoML and

pipelines.

Exam Focus Areas

Use MLTable for AutoML jobs and tabular data

Mount is efficient for large datasets (no full download)

Version data assets for reproducibility

Type Use Case Format

MLTable Tabular data mltable (with MLTable file)

Feedback

3 / 10



Datastores use service principal or managed identity

Model Training

Model Training in Azure ML

Training approaches and techniques

Training Options

AutoML Task Types

Classification

Predict categories (binary, multi-

class)

Regression

Predict continuous values

Time Series

Forecast future values

Computer Vision

Image classification, object

detection

Method Use Case Features

AutoML
Automated model

selection

Algorithm search, hyperparameter

tuning

Designer Visual ML pipeline Drag-drop, no code

Python SDK
Custom training

scripts
Full control, flexibility

CLI v2
Command-line

workflows
YAML-based configuration

Feedback

4 / 10



NLP

Text classification, NER

Hyperparameter Tuning

Grid Search: Exhaustive search over parameter grid

Random Search: Random sampling of parameter space

Bayesian: Smart sampling based on prior results

Early Termination: Stop poor-performing runs (Bandit, Median, Truncation)

Distributed Training

Data Parallelism

Split data across nodes

Model Parallelism

Split model across nodes

PyTorch DDP

DistributedDataParallel

Horovod

Framework-agnostic distribution

Exam Focus Areas

AutoML handles featurization, algorithm selection, tuning

Use Bayesian sampling for efficient hyperparameter search

Early termination saves compute costs on poor runs

MLflow logs metrics, parameters, and artifacts automatically

MLOps & Pipelines

Azure ML Pipelines & MLOps
Feedback

5 / 10



Operationalize ML workflows

Pipeline Components

MLflow Integration

Tracking

Log metrics, params, artifacts

Models

Model registry with versioning

Projects

Reproducible runs

Serving

Deploy models as endpoints

CI/CD for ML

Azure DevOps: Pipelines for training and deployment

GitHub Actions: Workflow automation

Model Registry: Version and stage models (staging → production)

Endpoints: Blue-green deployments, traffic splitting

Responsible AI

Use the Responsible AI dashboard to understand model behavior: Error

Analysis, Fairness, Interpretability, and Counterfactuals.

Component Description Use

Command Run scripts Training, preprocessing

Parallel Batch processing Large-scale inference

Pipeline Multi-step workflow Chain components

Sweep Hyperparameter tuning Find best parameters

Feedback

6 / 10



Exam Focus Areas

Pipelines automate data prep → training → deployment

MLflow is the default tracking framework in Azure ML

Register models to enable versioning and deployment

Use managed endpoints for simplified deployment

Deployment

Model Deployment

Deploy models to production

Endpoint Types

Deployment Strategies

Blue-Green

Two deployments, switch traffic

Canary

Gradual traffic shift

Type Use Case Features

Online Managed Real-time inference Auto-scaling, load balancing

Online Kubernetes AKS deployment More control, custom infra

Batch Large-scale batch
Scheduled, parallel

processing

Serverless
On-demand

inference
Pay-per-use, no idle cost

Feedback

7 / 10



A/B Testing

Compare model versions

Shadow

Parallel deployment, compare

results

Scoring Script

init(): Load model, one-time setup

run(data): Process each request, return predictions

Model path: Use AZUREML_MODEL_DIR environment variable

Dependencies: Specify in environment or conda file

Monitoring & Retraining

Data Drift

Detect input distribution changes

Model Drift

Prediction quality degradation

Alerts

Trigger retraining pipelines

A/B Testing

Compare model versions

Exam Focus Areas

Managed online endpoints handle scaling automatically

Use traffic allocation for blue-green deployments

Batch endpoints for processing large datasets

Monitor data drift to know when to retrain

Responsible AI

Responsible AI Practices

Feedback

8 / 10



Build trustworthy ML solutions

Responsible AI Principles

Fairness

Equal treatment across groups

Reliability

Consistent, expected behavior

Privacy

Protect sensitive data

Inclusiveness

Accessible to all users

Transparency

Explainable decisions

Accountability

Human oversight

Responsible AI Dashboard

Model Interpretability

Global: Overall feature importance across dataset

Local: Explanation for individual predictions

SHAP: SHapley Additive exPlanations values

LIME: Local Interpretable Model-agnostic Explanations

Component Purpose Insights

Error Analysis Find failure modes Error cohorts, patterns

Fairness Assess bias Metrics across groups

Interpretability Explain predictions Feature importance, SHAP

Counterfactuals What-if scenarios Change inputs, see effects

Causal Cause-effect analysis Treatment effects

Feedback

9 / 10



InterpretML: Microsoft's interpretability package

Exam Focus Areas

Use Responsible AI dashboard to debug models

Error Analysis helps find where model fails most

Fairness metrics reveal bias across demographic groups

Counterfactuals show what changes would flip predictions

CertStud

About Roadmaps Study Guides Detours Blog Newsletter FAQ

Changelog Privacy Terms Contact

© 2026 CertStud. All rights reserved.

Affiliate Disclosure: CertStud participates in affiliate programs including Amazon Associates and
Upwork. We may earn commissions from qualifying purchases or sign-ups made through links on our

site at no additional cost to you. This helps us provide free study materials. Learn more

Feedback

10 / 10

http://localhost:3000/about
http://localhost:3000/roadmaps
http://localhost:3000/study-guides
http://localhost:3000/detours
http://localhost:3000/blog
http://localhost:3000/newsletter
http://localhost:3000/faq
http://localhost:3000/changelog
http://localhost:3000/privacy
http://localhost:3000/terms
http://localhost:3000/contact
http://localhost:3000/terms

